Cluster Algebras of Finite Type via Coxeter Elements and Principal Minors

نویسندگان

  • SHIH-WEI YANG
  • ANDREI ZELEVINSKY
چکیده

We give a uniform geometric realization for the cluster algebra of an arbitrary finite type with principal coefficients at an arbitrary acyclic seed. This algebra is realized as the coordinate ring of a certain reduced double Bruhat cell in the simply connected semisimple algebraic group of the same Cartan-Killing type. In this realization, the cluster variables appear as certain (generalized) principal minors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sortable Elements in Infinite Coxeter Groups

In a series of previous papers, we studied sortable elements in finite Coxeter groups, and the related Cambrian fans. We applied sortable elements and Cambrian fans to the study of cluster algebras of finite type and the noncrossing partitions associated to Artin groups of finite type. In this paper, as the first step towards expanding these applications beyond finite type, we study sortable el...

متن کامل

Cyclic Sieving and Cluster Multicomplexes

Reiner, Stanton, and White [10] proved results regarding the enumeration of polygon dissections up to rotational symmetry. Eu and Fu [2] generalized these results to Cartan-Killing types other than A by means of actions of deformed Coxeter elements on cluster complexes of Fomin and Zelevinsky [6]. The ReinerStanton-White and Eu-Fu results were proven using direct counting arguments. We give rep...

متن کامل

Polyhedral models for generalized associahedra via Coxeter elements

Motivated by the theory of cluster algebras, F. Chapoton, S. Fomin, and A. Zelevinsky associated to each finite type root system a simple convex polytope, called generalized associahedron. They provided an explicit realization of this polytope associated with a bipartite orientation of the corresponding Dynkin diagram. In the first part of this paper, using the parametrization of cluster variab...

متن کامل

Noncommutative algebras related with Schubert calculus on Coxeter groups

For any finite Coxeter system (W,S) we construct a certain noncommutative algebra, the so-called bracket algebra, together with a family of commuting elements, the so-called Dunkl elements. The Dunkl elements conjecturally generate an algebra which is canonically isomorphic to the coinvariant algebra of the Coxeter group W. We prove this conjecture for classical Coxeter groups and I2(m). We def...

متن کامل

Generalized Nil-coxeter Algebras over Discrete Complex Reflection Groups

We define and study generalized nil-Coxeter algebras associated to Coxeter groups. Motivated by a question of Coxeter (1957), we construct the first examples of such finite-dimensional algebras that are not the ‘usual’ nil-Coxeter algebras: a novel 2-parameter type A family that we call NCA(n, d). We explore several combinatorial properties of NCA(n, d), including its Coxeter word basis, length...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008